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LETIER TO THE EDITOR 

Non-universal and anomalous surface critical behaviour in 
an inhomogeneous semi-infinite Gaussian model 

Theodore W Burkhardt and Ihnsouk Guim 
Department of Physics, Temple University, Philadelphia, PA 19122, USA 

Received 22 February 1982 

Abstnd. We consider a semi-infinite Gaussian model with spatially inhomogeneous 
short-range couplings which depend on the distance z from the surface. Far from the 
surface the coupling constants vary as K ( z )  = Ke - Az ’. For y > 2 the pair correlation 
function of the surface spins decays as a power law with a universal exponent = 2 at 
the bulk critical temperature. For y = 2, is non-universal, and for y < 2 there is an 
anomalous exponential decay. 

Recently Hilhorst and van Leeuwen (1981, 1982) reported exact results for the pair 
correlation function g ( r )  of the boundary spins in a semi-infinite two-dimensional 
king model with spatially inhomogeneous nearest-neighbour couplings which depend 
on the distance z from the surface. The coupling constants are weaker near the 
surface than in the bulk and vary as K ( z )  = K B - A / z ’  for z much greater than the 
lattice constant. At the bulk critical temperature, for y > 1, g ( r )  decays as a power 
law with the same universal exponent 71 = 1 as in the homogeneous semi-infinite case 
A = 0. For y = 1, 7~ is non-universal and varies continuously with A, and for y < 1 
there is an anomalous exponential decay. 

It was subsequently pointed out (Burkhardt 1982a, b, Cordery 1982) that these 
results are compatible with a simple local scaling picture, which is applicable, in 
principle, to any semi-infinite system with a divergent correlation length. For a system 
with 

The 

bulk exponent Y the scaling theory predicts? 

exponent TH for y > Y-’ in (1) is universal and has the same value as in the 
homogeneous semi-infinite case. The quantity $ in the anomalous exponential decay 
for y < Y-’ is a finite characteristic len4th at the bulk critical temperature, which 
according to the scaling theory varies as 6 -A-“’“-“’). 

t Scaling theory alone does not predict the form of the decay for y < Y ’, only that it involves the finite 
characteristic length f defined below (1). An additional assumption which implies the anomalous exponential 
form has been discussed by Burkhardt (1982a). Another argument is as  follows. I n  the spatially 
inhomogeneous system the local correlation length 6 - 1  ” varies as 6 ( z ) - A - ” z Y V  at the bulk critical 
temperature. An anomalous exponential decay of the type considered above, but perpendicular rather 
than parallel to the surface, arises from the combined z dependence in the ordinary exponential decay 
exp(-z / f (z ) ) ,  since z / ~ ( z ) - - A ” z ’  -”’. 
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In this letter we consider a semi-infinite Gaussian model with inhomogeneous 
couplings of the type considered above. Despite the simplicity of the model, one finds 
the same rich variety of surface critical behaviour as y is varied as in the Ising case. 
Both the Gaussian and Ising results are in complete agreement with the scaling theory. 
In both systems in the marginal case y = Y-’ the exponent 7711 is non-universal and 
varies continuously with A. 

We first describe a calculation for the two-dimensional Gaussian model on a 
triangular lattice based on the differential real-space renormalisation method applied 
by Hilhorst and van Leeuwen to the king system. The method is only applicable to 
models with a star-triangle transformation. We then briefly consider an alternative 
approach based on a d-dimensional continuum Gaussian model. 

We begin with a Gaussian model on a semi-infinite triangular lattice with partition 
function 

Following Hilhorst and van Leeuwen we consider nearest-neighbour couplings K,” 
of the form (see figure 1) 

K l ( m )  = KIB-Al /mY  m =;, 3, .  . . 
K2(m)=KZB-A2/my m = 1 , 2 , .  . 

(3) 

where m gives the distance of the bond from the edge. At criticality the bulk couplings 
KIB, KZB satisfy K1B + 2KZB = f. We map the Gaussian model with coupling constants 
K1, K2 corresponding to the triangular lattice of full lines in figure 1 onto another 
Gaussian model with coupling constants K ; ,  K i  corresponding to the triangular lattice 
of broken lines via an intermediate Gaussian model with couplings pl,  p z  on the 
hexagonal lattice of dotted lines. The triangular lattices with couplings Ki and KI are 
generated from the hexagonal lattice by applying the star-triangle transformation 
(Syozi 1972, Yamazaki and Hilhorst 1979) to the right- and left-pointing stars, 
respectively. For the Gaussian system considered here the transformation equations 
have the explicit form 

Kl(m)  = pz(m )’/D+(m - 2) 

K i  ( m )  =p2(m)’/D-(m + $ ) 2  

where 

K d m )  =pl(m)pdm - f ) /D+(m - 1)D+(m) 

K ;  ( m )  =pl(m)pz(m +$)lD-(m)D-(m + 1) 

1 2  

(4) 

( 5 )  

The couplings Ki and KI are numbered analogously, i.e. the left-most broken vertical 
bond in figure 1 is K i  ($). 

Equations expressing the KI in terms of the Ki may be obtained by eliminating 
the p i  in (4). Iterating the transformation many times generates a sequence of triangular 
lattices with couplings Ki(m, n ) ,  n = 0, 1,  2, . . . . The pair correlation function g(r, n )  
of surface spins separated by r in system n transforms according to 

1 2 112 ~ , ( m ) = E l - p l ( m ) ~ - 2 p 2 ( m * ~ )  I . 

g(r ,  n)=$Q(n)[g(r+l ,  n+1)+2g(r,  n + l ) + g ( r - 1 ,  n+1)3 (6 )  
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I I 1 L m  
0 1 2 

w e  1. (After Hilhont and van Leeuwen 1981.) The initial triangular lattice with 
couplings K l ( m ) ,  K l ( m )  (full lines), the intermediate hexagonal lattice with couplings 
pl(m), pz(m) (dotted lines), and the new triangular lattice with couplings K \ (m‘), K;(m’) 
(broken lines, only a few triangles are shown). m is a measure of the distance from the 
edge. The coupling constants K ;  (m’), K ;  (m’) are numbered analogously, with m’ = 
for the K ;  coupling furthest to the left. 

Hilhorst and van Leeuwen show how to calculate the correlation function g ( r )  = 
g ( r ,  0) from the sequence of O(n), and we refer to their papers for details. The 
behaviour of g ( r )  for large r is determined by the behaviour of the O(n) for large n. 
The asymptotic form O(n)+ 1 -an- ’  corresponds to a power law g ( r )  - f Z 0 ,  and the 
asymptotic form O(n)+ 1 -he-’, O <  6 < 1, to the anomalous exponential decay 

1, where i= {[6/( l+ b-1}”2e, g ( r )  - exp - ( d 5 )  
To calculate the behaviour of Q(n1  for large n,  we consider K,(m,  n )  which vary 

so slowly in m and n that the difference equations (4). ( 5 )  may be replaced by nonlinear 
first-order partial differential equations. In terms of the p, rather than the K, the 
differential equations are given by 

- 2e/( i+e)  

aP1 2 aP2 
P1-* aP2 PIP2 -- an am am 

-= 

Making the substitution U = p I / p 2 ,  U = l/p2 and regarding m and n rather than U and 
U as the dependent variables, one is led to the linear equations 

Equations (9) are to be solved with the boundary conditions u(0,  n )  = 0 (which 
corresponds to K2(O, n )  = 0 and pl(0, n )  = 0; see figure 1) and u(00, n )  = uR, u(00, n )  = 
uB. In terms of the variables U, U the bulk criticality condition is u s  - uB = 2. 

Apart from the minus signs in equation (9) and in the criticality condition, the 
flow equations in the variables U and U are the same as in the Ising case. Following 



L308 Letter to the Editor 

in the footsteps of Hilhorst and van Leeuwen, we consider superpositions of separable 
solutions of the form 

where the I, and K,  are modified Bessel functions. w ( p )  is a weight function which 
is chosen to match the initial system of interest for n fixed, m -*a. The choice 
w ( p )  + Cp1/y+1 /2  for p + 00 corresponds to inhomogeneous K i ( m )  of the form (3), with 

A2 = $ ( 1 + 2 K l ~ ) ~ A  (11) A -1 
1 - 2K1~(1 - ~ K ~ B ) A ,  

To calculate the asymptotic behaviour of Q ( n )  for large n, we consider (10) in 
the limit m-fixed, n + 00, recalling that U and SU = U - 2 are small quantities near the 
surface and near criticality. Analysing the resulting form for Q ( n )  as discussed 
following (7), we find that g ( r )  decays according to (1) with d = 2 and v = 5. For y > 2, 
7711 = 2, and in the marginal case y = 2, 7711 has the non-universal form 

The characteristic length i for y < 2 is given by 

This concludes our discussion of the correlation of the surface spins for the Gaussian 
model on a triangular lattice. The correlation function for internal spins and the 
magnetisation profile with a surface field may be calculated with the same differential 
real-space renormalisation technique, and we intend to consider these quantities in 
a future publication. The corresponding calculation for king spins is difficult if not 
impossible, since one must contend with triplet couplings generated by the star-triangle 
transformation, which, however, are absent in the Gaussian case. 

The critical behaviour of the homogeneous Gaussian model is essentially indepen- 
dent of the dimension of the system, and one would expect the principal results 
obtained above (811 = 2 for y > 2, 811 non-universal for y = 2, anomalous exponential 
decay for y < 2) to hold for other dimensions besides 2. We have also considered a 
d-dimensional semi-infinite continuum Gaussian model (see Bray and Moore 1977, 
Cordery and Griffin 1981, and references therein) with the Hamiltonian 

Here s(x) is the spin density at point x = (r, z), with r and z parallel and perpendicular 
to the surface, respectively. The integration in (15) extends over the half-space z >O.  
The surface interaction parameter c is assumed to be positive, corresponding to the 
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‘ordinary’ transition. The quantity tB + A Z - ~  is an inhomogeneous local temperature 
variable; tB = 0 corresponds to the bulk critical temperature. 

It is convenient to consider the Fourier component with wavevector k, g k ( z ,  z ’ ) ,  
of the correlation function (s(r ,  z ) s ( r ‘ ,  z’)) ,  Fourier transformed in r -r’ .  This quantity 
satisfies the one-dimensional inhomogeneous ‘Schriidinger’ equation (Bray and Moore 
1977) 

+ k + fg + Az -’ + C 6  ( 2  ) gk (2, 2’) = 6 ( 2  - 2’). (16) 

From (16) one sees that fB,  A and c transform as t k  = b fB, A‘= b2-YA, c ’ =  bc as 
lengths are rescaled by b, consistent with the bulk exponent v = f and the crossover 
exponents 4A = 1 - vy (Burkhardt 1982a,b, Cordery 1982) and & = 1 - v (Bray and 
Moore 1977). The temperature inhomogeneity is irrelevant for y > 2, which implies 
the same exponent q11= 2 as in the homogeneous semi-infinite case A = 0. 

In the marginal case y = 2, & ( z ,  z ‘ )  can be constructed explicitly (Bray and Moore 
1977) from the two linearly independent solutions of the homo eneous digerential 

where I,, and K ,  are modified Bessel functions, K = J k 2  + t B ,  and A = p 2  - f. 1711, as 
pointed out by Cordery and Griffin (1981), is non-universal and depends continuously 
on A. An explicit expression for qll may be found from the asymptotic behaviour 
& ( Z ,  2’) - k-’+? - k2@ for small k and fB  = 0, which implies 

2 

) 
d2 (-z 

equation corresponding to (16). These solutions have the form J zI,,(Kz), v’zK,,CKz), 

1 + J1+4A. (17) 

Non-universal quantities depend on the details of the model, and expressions (13) 
and (17) are similar but not identical. 

For arbitrary y c 2 the k = 0 Fourier component go(z, z ‘ )  at the bulk critical 
temperature t B  = 0 can be constructed explicitly from the solutions &IG ( ( z / f ) ’  ’I2), 

&K, ( ( z / f )  to the homogeneous differential equation corresponding to (16) 
(see, for example, Schiff 1968). Here f i  = 1/(2 - y ) ,  and 

1-Y/2  

From the asymptotic form of the Bessel functions for large arguments, one sees that 
go(z, 2’) decays as exp[ - ( ~ / f ) ’ - ’ ’ ~ ]  for z >> z’. This is an anomalous decay of the form 
(1)  but perpendicular rather than parallel to the surface. Note the similarity between 
the correlation lengths i and f i n  (14) and (18). One may conclude that the correlation 
function (s(r ,  z ) s ( r ’ ,  2’)) exhibits the same anomalous exponential decay perpendicular 
to the surface in the limit z >> z‘,  z >> Ir - r‘l as go(z, 2’) on the basis of a steepest-descent 
argument: Since gk ( z ,  z’) ,  k # 0, falls off with an ordinary exponential decay exp ( - kz),  
which is faster than the anomalous exponential decay, the k = 0 Fourier component 
in the Fourier integral for the correlation function in real space should outweigh the 
k # 0 components in the limit z DZ‘, z > > l r - r ’ / .  We have not yet succeeded in 
calculating the correlation function of the continuum model for y C 2 parallel to the 
surface, i.e. in the limit Ir -r’l>> z ,  2‘. 

In closing we note once again that the exact results of Hilhorst and van Leeuwen 
for the Ising model and our results for the Gaussian model are in complete agreement 
with the local scaling picture referred to in the paragraph containing equation ( l ) ,  
which predicts analogous behaviour in any semi-infinite system with interaction para- 
meters which vary as K ( z )  = KB - A Y y  which has a divergent bulk correlation length. 
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